MathDB
Find all solution of function

Source: Moldova JBMO TST 2005 day 1 problem 4

August 15, 2014
functionmodular arithmeticinductionalgebra unsolvedalgebra

Problem Statement

Let the AA be the set of all nonenagative integers. It is given function such that f:AAf:\mathbb{A}\rightarrow\mathbb{A} with f(1)=1f(1) = 1 and for every element nn od set AA following holds: 1) 3f(n)f(2n+1)=f(2n)(1+3f(n))3 f(n) \cdot f(2n+1) = f(2n) \cdot (1+3 \cdot f(n)); 2) f(2n)<6f(n)f(2n) < 6f(n), Find all solutions of f(k)+f(l)=293f(k)+f(l) = 293, k<lk<l.