MathDB
Six Triangular Sections

Source:

February 1, 2009
geometry

Problem Statement

Through a point inside a triangle, three lines are drawn from the vertices to the opposite sides forming six triangular sections. Then: <spanclass=latexbold>(A)</span> the triangles are similar in opposite pairs <span class='latex-bold'>(A)</span>\ \text{the triangles are similar in opposite pairs} <spanclass=latexbold>(B)</span> the triangles are congruent in opposite pairs <span class='latex-bold'>(B)</span>\ \text{the triangles are congruent in opposite pairs} <spanclass=latexbold>(C)</span> the triangles are equal in area in opposite pairs <span class='latex-bold'>(C)</span>\ \text{the triangles are equal in area in opposite pairs} <spanclass=latexbold>(D)</span> three similar quadrilaterals are formed <span class='latex-bold'>(D)</span>\ \text{three similar quadrilaterals are formed} <spanclass=latexbold>(E)</span> none of the above relations are true <span class='latex-bold'>(E)</span>\ \text{none of the above relations are true}