MathDB
Inequality in system of equations

Source: Romanian TST 1979 day 2 P3

April 15, 2023
inequalitiessimultaneous equationalgebrasystem of equations

Problem Statement

Let a,b,cRa,b,c\in \mathbb{R} with a2+b2+c2=1a^2+b^2+c^2=1 and λR>0{1}\lambda\in \mathbb{R}_{>0}\setminus\{1\}. Then for each solution (x,y,z)(x,y,z) of the system of equations: {xλy=a,yλz=b,zλx=c. \begin{cases} x-\lambda y=a,\\ y-\lambda z=b,\\ z-\lambda x=c. \end{cases} we have x2+y2+z21(λ1)2\displaystyle x^2+y^2+z^2\leqslant \frac1{(\lambda-1)^2}.
Radu Gologan