MathDB
Nice inequality with frac 45

Source: Romanian selection test 2002

August 12, 2003
inequalitiesalgebraromania

Problem Statement

Let n4n\geq 4 be an integer, and let a1,a2,,ana_1,a_2,\ldots,a_n be positive real numbers such that a12+a22++an2=1. a_1^2+a_2^2+\cdots +a_n^2=1 . Prove that the following inequality takes place a1a22+1++ana12+145(a1a1++anan)2. \frac{a_1}{a_2^2+1}+\cdots +\frac{a_n}{a_1^2+1} \geq \frac{4}{5}\left( a_1 \sqrt{a_1}+\cdots +a_n \sqrt{a_n} \right)^2 . Bogdan Enescu, Mircea Becheanu