MathDB
Problems
Contests
Undergraduate contests
IMC
1997 IMC
1
limit of a sequence
limit of a sequence
Source: IMC 1997 day 1 problem 1
October 1, 2005
limit
logarithms
calculus
integration
real analysis
real analysis unsolved
Problem Statement
Let
{
ϵ
n
}
n
=
1
∞
\{\epsilon_n\}^\infty_{n=1}
{
ϵ
n
}
n
=
1
∞
be a sequence of positive reals with
lim
n
→
+
∞
ϵ
n
=
0
\lim\limits_{n\rightarrow+\infty}\epsilon_n = 0
n
→
+
∞
lim
ϵ
n
=
0
. Find
lim
n
→
∞
1
n
∑
k
=
1
n
ln
(
k
n
+
ϵ
n
)
\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}\sum\limits^{n}_{k=1}\ln\left(\dfrac{k}{n}+\epsilon_n\right)
n
→
∞
lim
n
1
k
=
1
∑
n
ln
(
n
k
+
ϵ
n
)
Back to Problems
View on AoPS