MathDB
limit of a sequence

Source: IMC 1997 day 1 problem 1

October 1, 2005
limitlogarithmscalculusintegrationreal analysisreal analysis unsolved

Problem Statement

Let {ϵn}n=1\{\epsilon_n\}^\infty_{n=1} be a sequence of positive reals with limn+ϵn=0\lim\limits_{n\rightarrow+\infty}\epsilon_n = 0. Find limn1nk=1nln(kn+ϵn) \lim\limits_{n\rightarrow\infty}\dfrac{1}{n}\sum\limits^{n}_{k=1}\ln\left(\dfrac{k}{n}+\epsilon_n\right)