MathDB
Romania National Olympiad 2014,grade 8 ,P1

Source:

April 29, 2014
inequalitiesinequalities proposed

Problem Statement

Let a,b,c(0,)a,b,c\in \left( 0,\infty \right).Prove the inequality abca+2(b+c)+bcab+2(c+a)+cabc+2(a+b)0.\frac{a-\sqrt{bc}}{a+2\left( b+c \right)}+\frac{b-\sqrt{ca}}{b+2\left( c+a \right)}+\frac{c-\sqrt{ab}}{c+2\left( a+b \right)}\ge 0.