MathDB
Cond. on lateral lim. for a f to be the integral of certain f (hard)

Source: Romanian NO 2011, grade xii, p.4

October 3, 2019
functionintegrationreal analysis

Problem Statement

Let f,F:RR f,F:\mathbb{R}\longrightarrow\mathbb{R} be two functions such that f f is nondecreasing, F F admits finite lateral derivates in every point of its domain, limxyf(x)limxyF(x)F(y)xy,limxy+f(x)limxy+F(x)F(y)xy, \lim_{x\to y^-} f(x)\le\lim_{x\to y^-}\frac{F(x)-F\left( y \right)}{x-y} ,\lim_{x\to y^+} f(x)\ge\lim_{x\to y^+}\frac{F(x)-F\left( y \right)}{x-y} , for all real numbers y, y, and F(0)=0. F(0)=0.
Prove that F(x)=0xf(t)dt, F(x)=\int_0^x f(t)dt, for all real numbers x. x.