MathDB
inequality, sum of (x_n^2)/(n^3)

Source: Serbia & Montenegro 2001 3,4th Grade P2

June 2, 2021
inequalitiesSummation

Problem Statement

Let x1,x2,,x2001x_1,x_2,\ldots,x_{2001} be positive numbers such that xi2x12+x2223+x3233++xi12(i1)3for 2i2001.x_i^2\ge x_1^2+\frac{x_2^2}{2^3}+\frac{x_3^2}{3^3}+\ldots+\frac{x_{i-1}^2}{(i-1)^3}\enspace\text{for }2\le i\le2001.Prove that i=22001xix1+x2++xi1>1.999\sum_{i=2}^{2001}\frac{x_i}{x_1+x_2+\ldots+x_{i-1}}>1.999.