MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2006 Today's Calculation Of Integral
109
Today's calculation of integral 109
Today's calculation of integral 109
Source: created by kunny
June 7, 2006
calculus
integration
trigonometry
limit
inequalities
function
calculus computations
Problem Statement
Let
I
n
=
∫
2006
2006
+
1
n
x
cos
2
(
x
−
2006
)
d
x
(
n
=
1
,
2
,
⋯
)
.
I_n=\int_{2006}^{2006+\frac{1}{n}} x\cos ^ 2 (x-2006)\ dx\ (n=1,2,\cdots).
I
n
=
∫
2006
2006
+
n
1
x
cos
2
(
x
−
2006
)
d
x
(
n
=
1
,
2
,
⋯
)
.
Find
lim
n
→
∞
n
I
n
.
\lim_{n\to\infty} nI_n.
lim
n
→
∞
n
I
n
.
Back to Problems
View on AoPS