MathDB
2008 JBMO Shortlist G9

Source: 2008 JBMO Shortlist G9

October 10, 2017
JBMOgeometry

Problem Statement

Let OO be a point inside the parallelogram ABCDABCD such that AOB+COD=BOC+AOD\angle AOB + \angle COD = \angle BOC + \angle AOD. Prove that there exists a circle kk tangent to the circumscribed circles of the triangles AOB,BOC,COD\vartriangle AOB, \vartriangle BOC, \vartriangle COD and DOA\vartriangle DOA.