MathDB
Miklos Schweitzer 1972_5

Source:

November 5, 2008
functiontopologyreal analysisreal analysis unsolved

Problem Statement

We say that the real-valued function f(x) f(x) defined on the interval (0,1) (0,1) is approximately continuous on (0,1) (0,1) if for any x0(0,1) x_0 \in (0,1) and ε>0 \varepsilon >0 the point x0 x_0 is a point of interior density 1 1 of the set H\equal{} \{x : \;|f(x)\minus{}f(x_0)|< \varepsilon \ \}. Let F(0,1) F \subset (0,1) be a countable closed set, and g(x) g(x) a real-valued function defined on F F. Prove the existence of an approximately continuous function f(x) f(x) defined on (0,1) (0,1) such that f(x)\equal{}g(x) \;\textrm{for all}\ \;x \in F\ . M. Laczkovich, Gy. Petruska