MathDB
AM-HM like Inequality

Source: Pan African Maths Olympiad

August 11, 2005
inequalities

Problem Statement

For any positive real numbers a,ba,b and cc, prove: 1a+1b+1c2a+b+2b+c+2c+a9a+b+c \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \geq \dfrac{2}{a+b} + \dfrac{2}{b+c} + \dfrac{2}{c+a} \geq \dfrac{9}{a+b+c}