MathDB
Romania District Olympiad 2005 - Grade XI

Source:

April 10, 2011
functionalgebrapolynomialirrational numberreal analysisreal analysis unsolved

Problem Statement

Let f:QQf:\mathbb{Q}\rightarrow \mathbb{Q} a monotonic bijective function.
a)Prove that there exist a unique continuous function F:RRF:\mathbb{R}\rightarrow \mathbb{R} such that F(x)=f(x), ()xQF(x)=f(x),\ (\forall)x\in \mathbb{Q}.
b)Give an example of a non-injective polynomial function G:RRG:\mathbb{R}\rightarrow \mathbb{R} such that G(Q)QG(\mathbb{Q})\subset \mathbb{Q} and it's restriction defined on Q\mathbb{Q} is injective.