MathDB
SEEMOUS 2019, problem 4

Source:

March 18, 2019
real analysiscollege contests

Problem Statement

(a) Let nn is a positive integer. Calculate 01xn1lnxdx\displaystyle \int_0^1 x^{n-1}\ln x\,dx.\\
(b) Calculate n=0(1)n(1(n+1)21(n+2)2+1(n+3)2).\displaystyle \sum_{n=0}^{\infty}(-1)^n\left(\frac{1}{(n+1)^2}-\frac{1}{(n+2)^2}+\frac{1}{(n+3)^2}-\dots \right).