trigonometry trivia
Source: Indonesia IMO 2007 TST, Stage 2, Test 1, Problem 1
November 15, 2009
trigonometrygeometrycircumcirclegeometry proposed
Problem Statement
Let be a point in triangle , and define as follows: \alpha\equal{}\angle BPC\minus{}\angle BAC, \beta\equal{}\angle CPA\minus{}\angle \angle CBA, \gamma\equal{}\angle APB\minus{}\angle ACB. Prove that PA\dfrac{\sin \angle BAC}{\sin \alpha}\equal{}PB\dfrac{\sin \angle CBA}{\sin \beta}\equal{}PC\dfrac{\sin \angle ACB}{\sin \gamma}.