MathDB
Cyclic equality

Source: Lusophon Mathematical Olympiad 2021 Problem 4

December 19, 2021
algebra

Problem Statement

Let x1,x2,x3,x4,x5R+x_1, x_2, x_3, x_4, x_5\in\mathbb{R}^+ such that
x12x1x2+x22=x22x2x3+x32=x32x3x4+x42=x42x4x5+x52=x52x5x1+x12x_1^2-x_1x_2+x_2^2=x_2^2-x_2x_3+x_3^2=x_3^2-x_3x_4+x_4^2=x_4^2-x_4x_5+x_5^2=x_5^2-x_5x_1+x_1^2
Prove that x1=x2=x3=x4=x5x_1=x_2=x_3=x_4=x_5.