MathDB
Inequality

Source: Serbian national olympiad 2022

April 1, 2022
inequalitiesSerbian competition

Problem Statement

Let aa, bb and cc be positive real numbers and a3+b3+c3=3a^3+b^3+c^3=3. Prove 132a+132b+132c3\frac{1}{3-2a}+\frac{1}{3-2b}+\frac{1}{3-2c}\geq 3