MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
Contest of the Centers of Excellency of Suceava
2012 Centers of Excellency of Suceava
4
Another integral sequence (last)
Another integral sequence (last)
Source:
October 31, 2019
calculus
integration
real analysis
sequence of integrals
Definite integral
Problem Statement
Let be the sequence
(
J
n
)
n
≥
1
,
\left( J_n \right)_{n\ge 1} ,
(
J
n
)
n
≥
1
,
where
J
n
=
∫
(
1
+
n
)
2
1
+
(
1
+
n
)
2
x
−
1
−
n
−
n
2
x
−
1
d
x
.
J_n=\int_{(1+n)^2}^{1+(1+n)^2} \sqrt{\frac{x-1-n-n^2}{x-1}} dx.
J
n
=
∫
(
1
+
n
)
2
1
+
(
1
+
n
)
2
x
−
1
x
−
1
−
n
−
n
2
d
x
.
a) Study its monotony. b) Calculate
lim
n
→
∞
J
n
n
.
\lim_{n\to\infty } J_n\sqrt{n} .
lim
n
→
∞
J
n
n
.
Ion Bursuc
Back to Problems
View on AoPS