For each positive integer n, let fn be a real-valued symmetric function of n real variables. Suppose that for all n and all real numbers x1,…,xn,xn+1,y it is true that (1)fn(x1+y,…,xn+y)=fn(x1,…,xn)+y,(2)fn(−x1,…,−xn)=−fn(x1,…,xn),(3)fn+1(fn(x1,…,xn),…,fn(x1,…,xn),xn+1)=fn+1(x1,…,xn).Prove that fn(x1,…,xn)=nx1+⋯+xn.