Source: 2022 Bulgarian Spring Math Competition, Problem 8.4
March 27, 2022
combinatoricsPermutations with restrictions
Problem Statement
Let p=(a1,a2,…,a12) be a permutation of 1,2,…,12.
We will denote Sp=∣a1−a2∣+∣a2−a3∣+…+∣a11−a12∣We'll call p<spanclass=′latex−italic′>optimistic</span> if ai>min(ai−1,ai+1)∀i=2,…,11.
a) What is the maximum possible value of Sp. How many permutations p achieve this maximum?b) What is the number of <spanclass=′latex−italic′>optimistic</span> permtations p?
c) What is the maximum possible value of Sp for an <spanclass=′latex−italic′>optimistic</span>p? How many <spanclass=′latex−italic′>optimistic</span> permutations p achieve this maximum?