MathDB
Putnam 2009 A3

Source:

December 7, 2009
Putnamlinear algebramatrixtrigonometrylimitinductionfunction

Problem Statement

Let dn d_n be the determinant of the n×n n\times n matrix whose entries, from left to right and then from top to bottom, are cos1,cos2,,cosn2. \cos 1,\cos 2,\dots,\cos n^2. (For example, d_3 \equal{} \begin{vmatrix}\cos 1 & \cos2 & \cos3 \\ \cos4 & \cos5 & \cos 6 \\ \cos7 & \cos8 & \cos 9\end{vmatrix}. The argument of cos \cos is always in radians, not degrees.) Evaluate limndn. \lim_{n\to\infty}d_n.