MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - High School Proof Olympiads
BAMO Contests
2010 BAMO
3
2010 BAMO C a+b+c \ge \frac{|a|+|b|+|c|}{3}
2010 BAMO C a+b+c \ge \frac{|a|+|b|+|c|}{3}
Source:
August 27, 2019
algebra
inequalities
Problem Statement
Suppose
a
,
b
,
c
a,b,c
a
,
b
,
c
are real numbers such that
a
+
b
≥
0
,
b
+
c
≥
0
a+b \ge 0, b+c \ge 0
a
+
b
≥
0
,
b
+
c
≥
0
, and
c
+
a
≥
0
c+a \ge 0
c
+
a
≥
0
. Prove that
a
+
b
+
c
≥
∣
a
∣
+
∣
b
∣
+
∣
c
∣
3
a+b+c \ge \frac{|a|+|b|+|c|}{3}
a
+
b
+
c
≥
3
∣
a
∣
+
∣
b
∣
+
∣
c
∣
.(Note:
∣
x
∣
|x|
∣
x
∣
is called the absolute value of
x
x
x
and is defined as follows. If
x
≥
0
x \ge 0
x
≥
0
then
∣
x
∣
=
x
|x|= x
∣
x
∣
=
x
, and if
x
<
0
x < 0
x
<
0
then
∣
x
∣
=
−
x
|x| = -x
∣
x
∣
=
−
x
. For example,
∣
6
∣
=
6
,
∣
0
∣
=
0
|6|= 6, |0| = 0
∣6∣
=
6
,
∣0∣
=
0
and
∣
−
6
∣
=
6
|-6| = 6
∣
−
6∣
=
6
.)
Back to Problems
View on AoPS