MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
III Soros Olympiad 1996 - 97 (Russia)
11.4
min y = cos8x + 3cos4x +3cos2x + 2cosx (III Soros Olympiad 1996-97 R3 11.4)
min y = cos8x + 3cos4x +3cos2x + 2cosx (III Soros Olympiad 1996-97 R3 11.4)
Source:
May 31, 2024
inequalities
algebra
trigonometry
Problem Statement
Find the smallest value of a function
y
=
cos
8
x
+
3
cos
4
x
+
3
cos
2
x
+
2
cos
x
.
y = \cos 8x + 3\cos 4x +3\cos2x + 2\cos x.
y
=
cos
8
x
+
3
cos
4
x
+
3
cos
2
x
+
2
cos
x
.
Back to Problems
View on AoPS