MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2001 District Olympiad
3
Romania District Olympiad 2001 - Grade IX
Romania District Olympiad 2001 - Grade IX
Source:
March 12, 2011
number theory proposed
number theory
Problem Statement
Conside a positive odd integer
k
k
k
and let
n
1
<
n
2
<
…
<
n
k
n_1<n_2<\ldots<n_k
n
1
<
n
2
<
…
<
n
k
be
k
k
k
positive odd integers. Prove that:
n
1
2
−
n
2
2
+
n
3
2
−
n
4
2
+
…
+
n
k
2
≥
2
k
2
−
1
n_1^2-n_2^2+n_3^2-n_4^2+\ldots+n_k^2\ge 2k^2-1
n
1
2
−
n
2
2
+
n
3
2
−
n
4
2
+
…
+
n
k
2
≥
2
k
2
−
1
Titu Andreescu
Back to Problems
View on AoPS