MathDB
Familiar inequality.. [ILL 1971]

Source:

January 2, 2011
inequalitiesinequalities proposed

Problem Statement

Let a1,a2,,ana_1,a_2,\ldots ,a_n be nn real numbers such that 0<aakb0<a\le a_k\le b for k=1,2,,nk=1,2,\ldots ,n. If m1=1n(a1+a2++an)m_1=\frac{1}{n}(a_1+a_2+\cdots+a_n) and m2=1n(a12+a22++an2)m_2=\frac{1}{n}(a_1^2+a_2^2+\cdots + a_n^2), prove that m2(a+b)24abm12m_2\le\frac{(a+b)^2}{4ab}m_1^2 and find a necessary and sufficient condition for equality.