MathDB
Periodic points

Source: Brazilian Math Olympiad, 2004

October 19, 2004
algebra unsolvedalgebra

Problem Statement

Let aa and bb be real numbers. Define fa,b ⁣:R2R2f_{a,b}\colon R^2\to R^2 by fa,b(x;y)=(abyx2;x)f_{a,b}(x;y)=(a-by-x^2;x). If P=(x;y)R2P=(x;y)\in R^2, define fa,b0(P)=Pf^0_{a,b}(P) = P and fa,bk+1(P)=fa,b(fa,bk(P))f^{k+1}_{a,b}(P)=f_{a,b}(f_{a,b}^k(P)) for all nonnegative integers kk. The set per(a;b)per(a;b) of the periodic points of fa,bf_{a,b} is the set of points PR2P\in R^2 such that fa,bn(P)=Pf_{a,b}^n(P) = P for some positive integer nn. Fix bb. Prove that the set Ab={aRper(a;b)}A_b=\{a\in R \mid per(a;b)\neq \emptyset\} admits a minimum. Find this minimum.