Let a and b be real numbers. Define fa,b:R2→R2 by fa,b(x;y)=(a−by−x2;x). If P=(x;y)∈R2, define fa,b0(P)=P and fa,bk+1(P)=fa,b(fa,bk(P)) for all nonnegative integers k.
The set per(a;b) of the periodic points of fa,b is the set of points P∈R2 such that fa,bn(P)=P for some positive integer n.
Fix b. Prove that the set Ab={a∈R∣per(a;b)=∅} admits a minimum. Find this minimum.