MathDB
2014 MMATHS Tiebreaker p3 - f(\sqrt{x_1x_2}) =\sqrt{f(x_1)f(x_2)}

Source:

October 8, 2023
algebraMMATHSfunctional equation

Problem Statement

Let f:R+R+f : R^+ \to R^+ be a function satisfying f(x1x2)=f(x1)f(x2)f(\sqrt{x_1x_2}) =\sqrt{f(x_1)f(x_2)} for all positive real numbers x1,x2x_1, x_2. Show that f(x1x2...xnn)=f(x1)f(x2)...f(xn)nf( \sqrt[n]{x_1x_2... x_n}) = \sqrt[n]{f(x_1)f(x_2) ... f(x_n)} for all positive integers nn and positive real numbers x1,x2,...,xnx_1, x_2,..., x_n.