MathDB
IMO ShortList 1998, algebra problem 1

Source: IMO ShortList 1998, algebra problem 1

October 22, 2004
inequalitiesalgebraIMO Shortlistn-variable inequalityArithmetic Mean-Geometric Mean

Problem Statement

Let a1,a2,,ana_{1},a_{2},\ldots ,a_{n} be positive real numbers such that a1+a2++an<1a_{1}+a_{2}+\cdots +a_{n}<1. Prove that a1a2an[1(a1+a2++an)](a1+a2++an)(1a1)(1a2)(1an)1nn+1. \frac{a_{1} a_{2} \cdots a_{n} \left[ 1 - (a_{1} + a_{2} + \cdots + a_{n}) \right] }{(a_{1} + a_{2} + \cdots + a_{n})( 1 - a_{1})(1 - a_{2}) \cdots (1 - a_{n})} \leq \frac{1}{ n^{n+1}}.