MathDB
BMT 2021 Geometry #10

Source:

August 12, 2023
geometry

Problem Statement

Consider ABC\vartriangle ABC such that CA+AB=3BCCA + AB = 3BC. Let the incircle ω\omega touch segments CA\overline{CA} and AB\overline{AB} at EE and FF, respectively, and define PP and QQ such that segments PE\overline{P E} and QF\overline{QF} are diameters of ω\omega. Define the function DD of a point KK to be the sum of the distances from KK to PP and QQ (i.e. D(K)=KP+KQD(K) = KP + KQ). Let W,X,YW, X, Y , and ZZ be points chosen on lines BC\overleftrightarrow {BC}, CE\overleftrightarrow {CE}, EF\overleftrightarrow {EF}, and FB\overleftrightarrow {F B}, respectively. Given that BC=133BC =\sqrt{133} and the inradius of ABC\vartriangle ABC is 14\sqrt{14}, compute the minimum value of D(W)+D(X)+D(Y)+D(Z)D(W) + D(X) + D(Y ) + D(Z).