MathDB
2016 LMT Individual #11

Source:

April 10, 2016

Problem Statement

Find all ordered triples (a,b,c)(a,b,c) of real numbers such that {a+b=c,a2+b2=c2c6,a3+b3=c32c25c.\begin{cases} a+b=c,\\ a^2+b^2=c^2-c-6,\\ a^3+b^3 = c^3-2c^2-5c. \\ \end{cases}
Proposed by Evan Fang