MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2005 Today's Calculation Of Integral
9
Today's calculation of Integral 9
Today's calculation of Integral 9
Source:
May 8, 2005
calculus
integration
logarithms
trigonometry
absolute value
calculus computations
Problem Statement
Calculate the following indefinite integrals. [1]
∫
(
x
2
+
4
x
−
3
)
2
(
x
+
2
)
d
x
\int (x^2+4x-3)^2(x+2)dx
∫
(
x
2
+
4
x
−
3
)
2
(
x
+
2
)
d
x
[2]
∫
ln
x
x
(
ln
x
+
1
)
d
x
\int \frac{\ln x}{x(\ln x+1)}dx
∫
x
(
l
n
x
+
1
)
l
n
x
d
x
[3]
∫
sin
(
π
log
2
x
)
x
d
x
\int \frac{\sin \ (\pi \log _2 x)}{x}dx
∫
x
s
i
n
(
π
l
o
g
2
x
)
d
x
[4]
∫
d
x
sin
x
cos
2
x
\int \frac{dx}{\sin x\cos ^ 2 x}
∫
s
i
n
x
c
o
s
2
x
d
x
[5]
∫
1
−
3
x
d
x
\int \sqrt{1-3x}\ dx
∫
1
−
3
x
d
x
Back to Problems
View on AoPS