MathDB
Miklós Schweitzer 2022 P8

Source: http://www.math.u-szeged.hu/~mmaroti/schweitzer/schweitzer-2022.pdf

November 22, 2022
college contestsDirichlet SeriesConvergence

Problem Statement

Original in Hungarian; translated with Google translate; polished by myself.
Prove that, the signs εn=±1\varepsilon_n = \pm 1 can be chosen such that the function f(s)=n=1εnns ⁣:{sC:Res>1}Cf(s) = \sum_{n = 1}^\infty\frac{\varepsilon_n}{n^s}\colon \{s\in\Bbb C:\operatorname{Re}s > 1\}\to \Bbb C converges to every complex value at every point ξ{sC:Res=1}\xi \in \{s\in\Bbb C:\operatorname{Re}s = 1\} (i.e. for every ξ{sC:Res=1}\xi \in \{s\in\Bbb C:\operatorname{Re}s = 1\} and every zCz \in \Bbb C, there exists a sequence snξs_n \to \xi, Resn>1\operatorname{Re}s_n > 1, for which f(sn)zf(s_n) \to z).