MathDB
0563 inequalities 5th edition Round 6 p3

Source:

May 6, 2021
algebrainequalities5th edition

Problem Statement

Let x,y,zx, y, z be three positive numbers such that (x+yz)(1x+1y1z)=4(x + y-z) \left( \frac{1}{x}+ \frac{1}{y}- \frac{1}{z} \right)=4. Find the minimal value of the expression E(x,y,z)=(x4+y4+z4)(1x4+1y4+1z4).E(x, y, z) = (x^4 + y^4 + z^4) \left( \frac{1}{x^4}+ \frac{1}{y^4}+ \frac{1}{z^4} \right) .