MathDB
Identity

Source:

January 7, 2016
combinatorics

Problem Statement

Let kNk \in \mathbb{N}. Prove that (k0)(x+k)k(k1)(x+k1)k+...+(1)k(kk)xk=k!,kR \binom{k}{0} \cdot (x+k)^k - \binom{k}{1} \cdot (x+k-1)^k+...+(-1)^k \cdot \binom{k}{k} \cdot x^k=k! ,\forall k \in \mathbb{R}