MathDB
Functional equation

Source: Benelux Mathematical Olympiad 2017, Problem 1

May 6, 2017
algebrafunctional equationalgebra proposed

Problem Statement

Find all functions f:Q>0Z>0f : \Bbb{Q}_{>0}\to \Bbb{Z}_{>0} such that f(xy)gcd(f(x)f(y),f(1x)f(1y))=xyf(1x)f(1y),f(xy)\cdot \gcd\left( f(x)f(y), f(\frac{1}{x})f(\frac{1}{y})\right) = xyf(\frac{1}{x})f(\frac{1}{y}), for all x,yQ>0,x, y \in \Bbb{Q}_{>0,} where gcd(a,b)\gcd(a, b) denotes the greatest common divisor of aa and b.b.