MathDB
Problems
Contests
National and Regional Contests
The Philippines Contests
Philippine MO
2021 Philippine MO
7
pmo problem 7
pmo problem 7
Source: PMO 2021
March 20, 2021
algebra
number theory
inequalities
Philippines
PMO
Problem Statement
Let
a
,
b
,
c
,
a, b, c,
a
,
b
,
c
,
and
d
d
d
be real numbers such that
a
≥
b
≥
c
≥
d
a \geq b \geq c \geq d
a
≥
b
≥
c
≥
d
and
a
+
b
+
c
+
d
=
13
a+b+c+d = 13
a
+
b
+
c
+
d
=
13
a
2
+
b
2
+
c
2
+
d
2
=
43.
a^2+b^2+c^2+d^2=43.
a
2
+
b
2
+
c
2
+
d
2
=
43.
Show that
a
b
≥
3
+
c
d
ab \geq 3 + cd
ab
≥
3
+
c
d
.
Back to Problems
View on AoPS