MathDB
Ascendant Function - Iran NMO 2004 (Second Round) - Problem2

Source:

September 24, 2010
functionalgebra proposedalgebra

Problem Statement

Let f:R0Rf:\mathbb{R}^{\geq 0}\to\mathbb{R} be a function such that f(x)3xf(x)-3x and f(x)x3f(x)-x^3 are ascendant functions. Prove that f(x)x2xf(x)-x^2-x is an ascendant function, too. (We call the function g(x)g(x) ascendant, when for every xyx\leq{y} we have g(x)g(y)g(x)\leq{g(y)}.)