MathDB
C_n^{2013} > C_a^{2013}, combinations (HOMC 2013 Q6)

Source:

July 30, 2019
Combinationsinequalities

Problem Statement

Let be given a{0,1,2,3,...,100}.a\in\{0,1,2, 3,..., 100\}. Find all n{1,2,3,...,2013}n \in\{1,2, 3,..., 2013\} such that Cn2013>Ca2013C_n^{2013} > C_a^{2013} , where Ckm=m!k!(mk)!C_k^m=\frac{m!}{k!(m -k)!}.