MathDB
Today's calculation of Integral 649

Source:

September 20, 2010
calculusintegrationtrigonometrylimitcalculus computations

Problem Statement

Let fn(x, y)=nrcosπr+n2r3 (r=x2+y2)f_n(x,\ y)=\frac{n}{r\cos \pi r+n^2r^3}\ (r=\sqrt{x^2+y^2}),
In=r1fn(x, y) dxdy (n2).I_n=\int\int_{r\leq 1} f_n(x,\ y)\ dxdy\ (n\geq 2).
Find limnIn.\lim_{n\to\infty} I_n.
2009 Tokyo Institute of Technology, Master Course in Mathematics