MathDB
Sum of Reciprocals of Triangular Numbers

Source:

April 6, 2013

Problem Statement

Let tn=n(n+1)2t_n=\dfrac{n(n+1)}2 be the nnth triangular number. Find 1t1+1t2+1t3++1t2002.\dfrac1{t_1}+\dfrac1{t_2}+\dfrac1{t_3}+\cdots+\dfrac1{t_{2002}}. <spanclass=latexbold>(A)</span>40032003<spanclass=latexbold>(B)</span>20011001<spanclass=latexbold>(C)</span>40042003<spanclass=latexbold>(D)</span>40012001<spanclass=latexbold>(E)</span>2<span class='latex-bold'>(A) </span>\dfrac{4003}{2003}\qquad<span class='latex-bold'>(B) </span>\dfrac{2001}{1001}\qquad<span class='latex-bold'>(C) </span>\dfrac{4004}{2003}\qquad<span class='latex-bold'>(D) </span>\dfrac{4001}{2001}\qquad<span class='latex-bold'>(E) </span>2