MathDB
Two sequences with powers of 2 related to sqrt(3)

Source: Baltic Way 2020, Problem 3

November 14, 2020
Sequenceinequalitiesinequalities proposed

Problem Statement

A real sequence (an)n=0(a_n)_{n=0}^\infty is defined recursively by a0=2a_0 = 2 and the recursion formula an={an12if an1<3an123if an13. a_{n} = \begin{dcases} a_{n-1}^2 & \text{if $a_{n-1}<\sqrt3$} \\ \frac{a_{n-1}^2}{3} & \text{if $a_{n-1}\geq\sqrt 3$.} \end{dcases} Another real sequence (bn)n=1(b_n)_{n=1}^\infty is defined in terms of the first by the formula bn={0if an1<312nif an13, b_{n} = \begin{dcases} 0 & \text{if $a_{n-1}<\sqrt3$} \\ \frac{1}{2^{n}} & \text{if $a_{n-1}\geq\sqrt 3$,} \end{dcases} valid for each n1n\geq 1. Prove that b1+b2++b2020<23. b_1 + b_2 + \cdots + b_{2020} < \frac23.