MathDB
Rioplatense Olympiad 2013, Level 3, Problem 1

Source:

August 23, 2014
inequalities proposedinequalities

Problem Statement

Let a,b,c,da,b,c,d be real positive numbers such that a2+b2+c2+d2=1a^2+b^2+c^2+d^2 = 1. Prove that (1a)(1b)(1c)(1d)abcd(1-a)(1-b)(1-c)(1-d) \geq abcd.