MathDB
Common points on two graphs

Source: 1970 AHSME Problem 26

April 16, 2014
AMC

Problem Statement

The number of distinct points in the xy-plane common to the graphs of (x+y5)(2x3y+5)=0(x+y-5)(2x-3y+5)=0 and (xy+1)(3x+2y12)=0(x-y+1)(3x+2y-12)=0 is
<spanclass=latexbold>(A)</span>0<spanclass=latexbold>(B)</span>1<spanclass=latexbold>(C)</span>2<spanclass=latexbold>(D)</span>3<spanclass=latexbold>(E)</span>4<span class='latex-bold'>(A) </span>0\qquad<span class='latex-bold'>(B) </span>1\qquad<span class='latex-bold'>(C) </span>2\qquad<span class='latex-bold'>(D) </span>3\qquad <span class='latex-bold'>(E) </span>4