Let S={1,2,…,3000}. Determine the maximum possible integer X that satisfies the condition:
For all bijective function f:S→S, there exists bijective function g:S→S such that
k=1∑3000(max{f(f(k)),f(g(k)),g(f(k)),g(g(k))}−min{f(f(k)),f(g(k)),g(f(k)),g(g(k))})≥X