MathDB
Hard problem

Source: 2023 Japan MO Finals 5

February 11, 2023
combinatorics

Problem Statement

Let S={1,2,,3000}S=\{1,2,\dots,3000\}. Determine the maximum possible integer XX that satisfies the condition: For all bijective function f:SSf:S\rightarrow S, there exists bijective function g:SSg:S\rightarrow S such that k=13000(max{f(f(k)),f(g(k)),g(f(k)),g(g(k))}min{f(f(k)),f(g(k)),g(f(k)),g(g(k))})X\displaystyle\sum_{k=1}^{3000}\left(\max\{f(f(k)),f(g(k)),g(f(k)),g(g(k))\}-\min\{f(f(k)),f(g(k)),g(f(k)),g(g(k))\}\right)\geq X