MathDB
Inequality

Source: Romania District Olympiad 2013,grade X(problem 2)

March 14, 2013
inequalitiestrigonometryfunctioninequalities proposed

Problem Statement

Let a,bCa,b\in \mathbb{C}. Prove that az+bzˉ1\left| az+b\bar{z} \right|\le 1, for every zCz\in \mathbb{C}, with z=1\left| z \right|=1, if and only if a+b1\left| a \right|+\left| b \right|\le 1.