MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2014 Harvard-MIT Mathematics Tournament
26
2014 Guts #26: Sum of Reciprocals of Sequence
2014 Guts #26: Sum of Reciprocals of Sequence
Source:
August 26, 2014
Problem Statement
For
1
≤
j
≤
2014
1\leq j\leq 2014
1
≤
j
≤
2014
, define
b
j
=
j
2014
∏
i
=
1
,
i
≠
j
2014
(
i
2014
−
j
2014
)
b_j=j^{2014}\prod_{i=1, i\neq j}^{2014}(i^{2014}-j^{2014})
b
j
=
j
2014
i
=
1
,
i
=
j
∏
2014
(
i
2014
−
j
2014
)
where the product is over all
i
∈
{
1
,
…
,
2014
}
i\in\{1,\ldots,2014\}
i
∈
{
1
,
…
,
2014
}
except
i
=
j
i=j
i
=
j
. Evaluate
1
b
1
+
1
b
2
+
⋯
+
1
b
2014
.
\dfrac1{b_1}+\dfrac1{b_2}+\cdots+\dfrac1{b_{2014}}.
b
1
1
+
b
2
1
+
⋯
+
b
2014
1
.
Back to Problems
View on AoPS