MathDB
2014 Guts #26: Sum of Reciprocals of Sequence

Source:

August 26, 2014

Problem Statement

For 1j20141\leq j\leq 2014, define bj=j2014i=1,ij2014(i2014j2014)b_j=j^{2014}\prod_{i=1, i\neq j}^{2014}(i^{2014}-j^{2014}) where the product is over all i{1,,2014}i\in\{1,\ldots,2014\} except i=ji=j. Evaluate 1b1+1b2++1b2014.\dfrac1{b_1}+\dfrac1{b_2}+\cdots+\dfrac1{b_{2014}}.