MathDB
Matrix and determinant

Source:

June 30, 2015
linear algebramatrix

Problem Statement

Let A,BMn(C)A,B\in M_n(C) be two square matrices satisfying A2+B2=2ABA^2+B^2 = 2AB.
1.Prove that det(ABBA)=0\det(AB-BA)=0. 2.If rank(AB)=1rank(A-B)=1, then prove that AB=BAAB=BA.