MathDB
The function is strictly convex

Source:

August 29, 2010
functiongeometryConvex FunctionsalgebraConvexityIMO Shortlist

Problem Statement

Let DD be the interior of the circle CC and let ACA \in C. Show that the function f:DR,f(M)=MAMMf : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|} where M=AMCM' = AM \cap C, is strictly convex; i.e., f(P)<f(M1)+f(M2)2,M1,M2D,M1M2f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2 where PP is the midpoint of the segment M1M2.M_1M_2.