Sequences Obeying Certain Conditions Modulo 4
Source: Irish Mathematical Olympiad - Paper 2 - 2008 -Question 4
May 11, 2008
linear algebramatrixnumber theory proposednumber theory
Problem Statement
Given and a positive integer , let be the number of sequences where x_i \in [\minus{}1,0,1] for i\equal{}1,...,n, and
x_1\plus{}...\plus{}x_n \equiv k mod 4
a) Prove that f_1(n) \equal{} f_3(n) for all positive integers .
(b) Prove that
f_0(n) \equal{} [{3^n \plus{} 2 \plus{} [\minus{}1]^n}] / 4
for all positive integers .