MathDB
Putnam 1962 B5

Source: Putnam 1962

May 21, 2022
Putnaminequalities

Problem Statement

Prove that for every integer nn greater than 1:1: 3n+12n+2<(1n)n+(2n)n++(nn)n<2.\frac{3n+1}{2n+2} < \left( \frac{1}{n} \right)^{n} + \left( \frac{2}{n} \right)^{n}+ \ldots+\left( \frac{n}{n} \right)^{n} <2.